SOLID OXIDE PLANAR AND TUBULAR SOLID OXIDE FUEL CELLS

Dynamic Simulation Approach

Modular Approach:

Individual simulation modules for each fuel cell type

- Tubular SOFC
- Planar SOFC
- MCFC
- PEM

Reformer module Gas turbine module (compressor and turbine sub-modules) Combustor module Catalytic oxidizer module Heat exchanger module Humidifier module Condenser module Pumps, valves, regulators, plumbing, and other balance of plant (BOP)

Standardized Framework For Dynamic Modeling & Controls

- Collaboration between Control group (Prof. F. Jabbari) and Dynamic Simulation (Prof. S. Samuelsen, J. Brouwer, ...)
- MATLAB and SimulinkTM Framework Chosen
- User friendly package by MathWorks (Matlab)
- Flexibility
 - o Prepackaged modules
 - o Object oriented
 - o Easy to learn and use
 - o Hardware extensible
 - o Transferable to other software
- Natural for adding controls development and power electronics

Previous Module Development

Reformer, SOFC, MCFC, PEM, Gas Turbine

General Model Assumptions

- 1D process flow
- Well-stirred within nodal volume
- Slow pressure transients

National Fuel Cell Research Center www.nfcrc.uci.edu

Fuel Cell Assumptions

- H2 electrochemically oxidized only
- CO consumed via water-gas shift
- Shift always at equilibrium (constraint)
- Equipotential: $V_{cell} = V_{node 1} = V_{node n}$

Dynamic Model Basic Equations

Equation of State $C = \frac{P}{R_{u}T}$

Mass Conservation Equations

• Calculates changes in mole fraction based on inlet molar flows and reaction rates

Dynamic Model Basic Equations Energy Conservation

Gaseous

Molar Flow Through Electrolyte (Fuel Cell Only)

$$\frac{d}{dt}(\rho C_{mass}T) = (\dot{N}h)_{gas1 \to solid} - (\dot{N}h)_{solid \to gas2} + (heat trans fer) + (heat of reaction)$$

Solid

Heat Transfer

- Conduction
- Axially from node to node through solids
- Between nodal materials (bipolar plates, electrodes, ...)

Convection

- Between surfaces and gases
- Based on Nusselt number

Radiation

- From surface to surface
- Geometry is an issue
- Concentric cylinders: TSOFC
- Parallel planes: PSOFC
- Other: combustor, reformer

Solid Oxide Fuel Cell Electrochemistry

$$H_2 + O^{2-} \xrightarrow{anode} H_2O + 2e^{-}$$

$$\frac{1}{2}O_2 + 2e^{-} \xrightarrow{cathode} O^{2-}$$

Cell Reactions

$$E = E_0 + \frac{R_{u}T}{2F} \ln \left(\frac{\chi_{H_1} \chi_{O_1}^{\frac{1}{2}}}{\chi_{H_1O}} P_{CATHODE}^{\frac{1}{2}} \right)$$

Nerst Potential

Ideal operating voltage with respect to partial pressures of cell reactants

Steam Reformation – Occurs in Reformer and Fuel Cells

$$CH_4 + H_2O \xrightarrow{reform} 3H_2 + CO$$

Methane reformation reaction

•

• Reaction rates on nickel based catalysts: Lee et al. (1990) and Ross et al. (1972)

$$\boldsymbol{r}_{CH_4} = -\boldsymbol{k} \boldsymbol{P}_{CH_4}^m \boldsymbol{P}_{H_2O}^n$$

From Stoichiometry...

$$r_{CO} = -r_{CH_4}$$
$$r_{H_2} = -3r_{CH_4}$$
$$r_{H_2O} = r_{CH_4}$$

Water Gas Shift – Occurs in Reformers and in Fuel Cells

Shift reaction

$$CO + H_2O \xleftarrow{\text{shift}} CO_2 + H_2$$

- Reaction proceeds fast enough at elevated temperatures to assume equilibrium
- Algebraic constraint at exit of each node

$$K(T) = \frac{\chi_{CO_2} \chi_{H_2}}{\chi_{CO} \chi_{H_2O}}$$

Fuel Cell Operation

$$V = E - \eta_A - \eta_C - \eta_R$$

Actual operating voltage

• Polarization losses are due to kinetics, mass transport and electrical resistances

$$\eta_{A} = \frac{R_{u}T}{\cos F} \ln\left(\frac{i_{node}}{i_{0}}\right)$$
$$\eta_{C} = -\frac{R_{u}T}{nF} \ln\left(1 - \frac{i}{i_{L}}\right)$$

$$\eta_R = iR$$

PSOFC DISCRETIZATION

10 Discrete Computational Nodes

- Anode Gas
- Cathode Gas
- Cell Solid
- Bi-Polar Plates

Progress and Current Status Jet Fuel Equilibrium Results

- Various Jet Fuel thermodynamic data acquired
- Commercial Aviation Fuel, Jet-A
 - o C11H21
 - o MW: 153 g/mol
 - o Heat of formation (DHfo): -249 kJ/mol
- Traditional Air Force Military Aviation Fuel, JP-4
 - o C10H19.4
 - o MW: 139 g/mol
 - o Heat of formation (DHfo): -227 kJ/mol
- Traditional Navy Military Aviation Fuel, JP-5
 - o C10H19.2
 - o MW: 139 g/mol
 - o Heat of formation (DHfo): -222 kJ/mol
 - Standard Military Aviation Fuel, JP-8
 - o C12H23
 - o MW: 167 g/mo
 - o Heat of formation (DHfo): -319 kJ/mol

Jet Fuel Equilibrium Results

Jet Fuel Equilibrium Results – Effects of S/C

Jet Fuel Equilibrium Results – Effects of O/C

Jet Fuel Equilibrium Results – Partial Oxidation

New Module Development Reaction Mechanism Need and Approaches

- Use Equilibrium results in look-up tables with discretized dynamic model for heat transfer, mass and momentum conservation
- Use Chemical Kinetics from a simpler hydrocarbon set
- Obtain data and/or develop simple chemical kinetic mechanism for JP-5

Must incorporate dynamic equations

- Heat transfer (conduction, convection, radiation)
- Mass (or species) conservation
- Momentum conservation
- Energy conservation

Main module development need is for the overall geometry of the NuElement Module

Dynamic JP-5 Reformer Module

Concentric Cylinders

- Combustor
- Catalyst Bed
- Preheat
- Anode off-gas recycle (option)

$$CH_4 + H_2O = CO + 3H_2$$
 $\Delta H_{298K}^0 = 206 \, kJ \,/\,mol$ (1)

$$CH_4 + 2H_2O = CO_2 + 4H_2 \quad \Delta H_{298K}^0 = 165 \, kJ \,/\,mol$$
 (2)

•
$$CH_4 + 2O_2 = CO_2 + 2H_2O$$
 $\Delta H_{298K}^0 = -803 \, kJ \,/\, mol$ (3)

New Module Development

• Reformer Geometry (5 nodes)

- Six Step Reaction Mechanism
- $CH_4 + H_2 O \Leftrightarrow CO + 3H_2$ (1)
- $CO + H_2O \Leftrightarrow CO_2 + H_2$ (2)
- $CH_4 + 2H_2O \Leftrightarrow CO_2 + 4H_2$ (3)
- $CH_4 + 2O_2 \Leftrightarrow CO_2 + 2H_2O(4)$
 - $CH_4 + H_2 O \Leftrightarrow CO + 3H_2$ (5)
- $CH_4 + CO_2 \Leftrightarrow 2CO + 2H_2$ (6)
- Arrhenius Rate Expressions

$$\mathbf{k}_{i} = \mathbf{A}_{i} \exp\left(-\frac{\mathbf{E}_{i}}{\mathbf{RT}}\right)$$

$$\begin{split} r_{1} &= k_{1} \left(\frac{P_{CH_{4}} P_{H_{3}O}}{P_{H_{3}}^{2.5}} - \frac{P_{CO} P_{H_{3}}^{0.5}}{K_{pl}} \right) / DEN^{2} \\ r_{2} &= k_{2} \left(\frac{P_{CO} P_{H_{3}O}}{P_{H_{3}}} - \frac{P_{CO_{3}}}{K_{p2}} \right) / DEN^{2} \\ r_{3} &= k_{3} \left(\frac{P_{CH_{4}} P_{H_{3}O}^{2}}{P_{H_{3}}^{3.5}} - \frac{P_{CO_{3}} P_{H_{3}}^{0.5}}{K_{p3}} \right) / DEN^{2} \\ r_{4} &= k_{4} P_{CH_{4}} P_{0_{3}} \\ r_{5} &= k_{5} \left(P_{CH_{4}} P_{H_{3}O} - \frac{P_{CO} P_{H_{3}}^{3}}{K_{p5}} \right) \\ r_{6} &= k_{6} \left(P_{CH_{4}} P_{CO_{3}} - \frac{P_{CO}^{2} P_{H_{3}}^{2}}{K_{p6}} \right) \end{split}$$

Reaction i	Activation energy E _i (kJ/mol)	Pre-exponential factor A _i
1	240.1	1.336 x 10 ¹⁵ (kmol*MPa ⁽⁰⁵⁾ /kg _{cat} *h)
2	67.13	1.955 x 10 ⁷ (kmol/kg _{cut} *h*MPa)
3	243.9	3.22 x 1014 (kmol*MPa ⁽⁰⁵⁾ /kg _{cat} *h)
4	166	1.10 (mol/g _{cat} *s*Pa ²)
5	29	4.19 x 10 ⁻⁹ (mol/g _{cat} *s*Pa ²)
6	23.7	2.42 x 10 ^{.9} (mol/g _{cut} *s*Pa ²)

 $\mathsf{DEN} = 1 + \mathsf{K}_{\mathsf{C0}} \mathsf{P}_{\mathsf{C0}} + \mathsf{K}_{\mathsf{H}_2} \mathsf{P}_{\mathsf{H}_2} + \mathsf{K}_{\mathsf{CH}_4} \mathsf{P}_{\mathsf{CH}_4} + \mathsf{K}_{\mathsf{H}_{20}} \mathsf{P}_{\mathsf{H}_{20}} / \mathsf{P}_{\mathsf{H}_2}$

• Reaction Equilibrium Constants

	Equilibium con <i>s</i> tant K _{pi}	Dimensions
	K _{p1} =1.198 x 10 ¹¹ *exp(-26830/T)	(MPa) ²
$K_j = A_j \exp\left(-\frac{\Delta H_j}{DT}\right)$	K _{p2} =1.77 x 10 ⁻² *exp(4400/T)	(MPa) ⁰
	$K_{p3} = K_{p1} \cdot K_{p2}$	((MPa) ²
	K _{p5} =K _{p1}	(MPa) ²
	K _{p6} =6.780 x 10 ¹² *exp(-31230/T)	(MPa) ²

• Reformer Dynamic Simulation Results – S/C 1.0 \rightarrow 1.5

• Reformer Dynamic Simulation Results – S/C 1.0 \rightarrow 1.5

• Reformer Dynamic Simulation Results – O/C 0.25 \rightarrow 0.5

• Reformer Dynamic Simulation Results – Catalyst "light off"

Personnel

Investigators: J. Brouwer, F. Jabbari, and G.S. Samuelsen, **Students:** Li Yuan, Fabian Mueller, Anh-Tuan Do

Sponsors

U.S. Department of Energy California Energy Commission Siemens Power Corporation